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It is proved that, under fairly general conditions, the canonical Poincaré-Chetayev equations are
Hamiltonian equations in non-canonical variables. It is shown that systems of generalized Lagrange
and Hamilton equations in redundant variables, of lower order than equations that contain
undetermined multipliers, as well as the Euler-Lagrange equations in quasi-coordinates, are all special
cases of the Poincaré-Chetayev equations. Thus the theory of the latter extends at once to the types of
systems just listed. The problem of using the Poincaré—Chetayev equations in non-holonomic dynamics
is discussed.

Poincaré’s remarkable idea [1] of representing the equations of motion of holonomic
mechanical systems in terms of a certain transitive Lie group of infinitesimal transformations
was extended by Chetayev [2-5] to the case of non-stationary constraints and dependent
variables, when the transformation group is intransitive. Chetayev transformed Poincaré’s
equations to canonical form and developed a theory for their integration.

One important and well-known way in which the modern theory of Hamiltonian systems
generalizes the classical theory is to use non-canonical coordinates [6-8], in terms of which the
equations of motion often become much simpler than the clumsy and inconvenient equations
in canonical coordinates g,, p,; this is the case, e.g. for the motion of a free rigid body. In
this sense the Poincaré—Chetayev theory is extremely promising for the modern theory of
Hamiltonian systems.

1. Consider a holonomic mechanical system with k degrees of freedom, whose position in
space at any time ¢ is defined by the values of the variables x,, ..., x, (n=>k), called defining
coordinates [S]. If n=k, the x, are independent Lagrangian coordmates, if n>k they are
dependent or redundant coordinates of the system.

Suppose that certain integrable differential constraints imposed upon the system have been
parametrized in some way, so that the generalized velocities may be written in the form

% =8 (0m, +&,(1.x), rank(§))=k(i=1,...,m s=1,....k) (1)

Throughout, the repeated-index summation convention will be used.
The following closed system of infinitesimal linear operators exist [4, 5]

d ) s 0
v =—+&—, X, =§ — (s=1..,k) . 12)
xo ot i axi .s i 8x,- )
which define non-transitively acting transformations that steer the holonomic system from a
position (x;) at time ¢ to an actual mfnmtesmally close posmon (x; +dx;) at time t+dt by the
transformation :
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df =(Xof +0,X,)dt, f(t.x)eC’ (13)

and to a virtual infinitesimally close position (x;+3x;) by the transformation

& =0,X,f (1.4)

In the case n=k, when det(€]) =0, the transformations (1.2) act transitively.
The system of linear operators (1.2) is closed in the sense that its commutator satisfies the
identity

(X, X;1f = X, X;f - X;Xif =ci X, (ihjis=0,1,....K) (1.5)

where the structure coefficients c; satisfy the conditions ¢;=—c;, ¢;;=0 and may also be
variable [5): ¢ =c; (¢, x). If all ¢ = const, then system (1.2)is a Lie group of real displacements
and the virtual dnsplacement operators X, (s=1,..., k) form a Lie subgroup of the group of
real displacements.

The parameters n, and o, of the real and virtual variables, introduced by Poincaré [1], are
related as follows:

=g-(2f-+cﬁ,n,a),+c{;,o), (r,s,i=1,....k) (1.6)

6'\1 ds

Poincaré, however, considered the case when all ¢, =0.

It is not hard to implement the parametrization (1.1) and construct a closed system of operators (1.2) if
the holonomic constraints are given by some completely integrable system of Pfaffian equations [4, 5]

0 =ay(t,1)8% =0 (i=1,.,; j=k+1,...m) | | 7

To that end we have to choose k linear differential forms ®,=a,(t, x)dx, (s=1, ..., k), which are
independent both with respect to one another and with respect to the forms (1.7), and then to solve the
resulting system of equations for dx,

& = (1), (hs=1,...,0)

For virtual displacements this yields expressions for the operators X, and the relation (1.4), provided
conditions (1.7) are satisfied. For real displacements constrained by completely integrable equations

n;dt ma, (1, x)dx; +a;(t,x)dt =0 (i=1,...n; j=k+l,...n) ‘ (1.8)

‘'we proceed in exactly the same way, taking (1.8) together with the additional forms ndt=a,(s, x)dx,
(s=1, ..., k) and dt; this yields expressions for the operators (1.2) and the relation (1.3). ,

As the auxiliary forms o, and ndt (i= .» k) may be chosen fairly arbitrarily, one can give the
parameters the most convenient kmematnc sense ‘and sunphty system (1.2) to a Lie group with constant
structure coefficients c;.

Using Eqs (1.1), we can represent the kinetic energy of the system by a function 7(¢, x,, . . .,
x,, N,..., N). Assuming that active forces admitting a force function U(t, x) are applied to
the points of the system, as well as non-potential forces with projections F,, F,, F, on the
stationary axes of a Cartesian system of coordinates xyz, we introduce the function L, x,

N =T(, x, N)+U(t, x) and generalized non-potential forces

Qi(tt x’n) = Z(Erxgx + F;’X‘y + F;XiZ) (i = i,...,k)
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where the summation is carried out over all points of the system,

We shall call L(t, x, n) the generalized Lagrangian to distinguish it from the classical
Lagrangian L(z, x, x), from which it is obtained by the substitution (1.1).

Chetayev [S] derived Poincaré’s equations from the D’Alembert-Lagrange principle

4 L, LIS L s XL+Q, (ssivek) (19)

—_—e—=
dt ani ans 311,
with which Egs (1.1) must be combined in the general case. The combined system of equations
of motion (1.9), (1.1) of order k+n contains the same number of unknowns x,, ..., x,,
Mo eees Mee ’
Among the special cases of Eqs (1.9) are the equations formulated by Poincaré [1] for the
case n=k, Q,=0 and

X, ;=0 (i,s=1,..,k)

=§,

as well as the Lagrange equations of the second kind.

Both Poincaré and Chetayev, incidentally, assumed that the structure coefficients were
constants: c; =const, in which case the system of operators (1.2) is a Lie group G. If in addition
Q,=0foralliand X, L=0 (a=0, 1,..., k), then the Lagrangian will depend only on the
parameters m,, which may be considered as coordinates in the Lie algebra g of G; in that case
Poincaré’s equations (1.9) will be a closed system of differential equations in algebra g 8, 9).

Chetayev [5] pointed out, however, that Poincaré’s equations are also meaningful when the
coefficients c; are allowed to vary: c;(t, x). We shall in fact consider this more general case.

If
X, =9/0t, co; =0, oL/t =0, Om; =0 (i,s=1,...,k) (1.10)
then Egs. (1.9) have a generalized energy integral
n;0L/ an; — L = const

Considering the case in which there are no non-potential forces Q,, Chetayev introduced the important
concept of a cyclic displacement X, (i=r+1, ..., k), which satisfies the conditions

1°0X,,X,1=0, ¢, =0 (a,s=0,1,..k); 2°X,L=0 (1.11)
If cyclic displacements exist, Eqs (1.9) have first integrals

oL/, =b, =const (i=r+1,....k) (1.12)

By (1.12), the parameters m,,,, ..., N, may be expressed as functions of £, x, n, ..., M,, b,,,, ..., b, and
one can form a generalized Routh function

R(t, %1400 Xps Npseer Ny br+l""'bk)= L—'ﬂgal;/a\‘]; (1.13)
Using the equalities
X,R=X,L, XqR=0, OR/3M, =3L/on,, dR/dby =-Ng (s=1,...r; @ur+l, . k)

we can write Egs (1.9) for non-cyclic displacements as generalized Routh equations



376 V. V. Rumyantsev

d 3R dR oR
+clMgb; +c} +clb; +XR G, a,s=1,...r j=r+l,...k) 1.14
& m, =CaMa 3= an,. aMaby + b~ o, Wt j= (1.14)

after integration of which the quantities m, are determined by the relations

Ng =-0R/db, (a=r+l,..,k) (1.15)

Elementary integrals like (1.12) were first given by Chaplygin [10] (see also [12]).

To transform Poincaré’s equation to canonical form, Chetayev replaced the variables m, by
new variables

=oL/om, (i=1,...k) (1.16)

and constructed a generalized Hamiltonian

H@, Xy s X0y Ypoees V) =yM; L (1.17)
It is not difficult to prove that
X,H = -XiL’ n" =aHlayi (i = 1,...,k)

using which, together with (1.16), one can reduce Poincaré’s equations (1.9) to the canonical
Poincaré—Chetayev equations

gy—’--c 2-}iy.,+c(,,y., -X;H+Q, n,=-—-- @,r,s=1,...,k) | (1.18)
dt . dy;

The second group of the canonical equations (1.18) may be given another form

dx
—L=X0xj+2}—i-Xx (G=L...,m r=1,..k) (1.19)
dt dy,

r

The combined system of differential equations of motion (1.18) and (1.19) is of order k+n
in the same unknowns yl, vy Vs Xis envs Xpe

If the quantities c;, ¢, Qf and H do not depend on the coordinates x;, the differential
equations (1.18) form a closed system.

A special case of (1.18) is that of the canonical Hamilton equations when the variables x,
(j=1, ..., k=n) are independent and the group (1.2) reduces to a permutation group; the
parameters of the real displacements are the Lagrangian generalized velocities m, = x;, so that
the variables x;, y, = =aL/ dx; are the canonical coordinates.

The generahzed Jacob1 theorem [2-5] holds for the canonical Poincaré—Chetayev equations:
if one knows a complete integral

(U S S A ) LT ua’wax,aa,uaeo a; = const (1.20)
of the first-order pértial differential equation
XV +H(t Xy Xys XgVreos XeV) =0 (1.21)
then the solution of Eqs (1.18) and (1.19) is determined by the set of all their integrals

V/da,=b,=const, yu =X,V (j=1l....n; a=1,...k) (1.22)
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At first sight, the first group of integrals (1.22) yields a general solution of system (1.18), and (1.19) that
depends on the 2n arbitrary constants a,, b,, while the order of the system is k+n. In reality, however,
the solution will depend on only k+n constants. In fact, since the constraints imposed on the system are
represented by the completely integrable system of Pfaffian equations (1.8), the system may be reduced to
the form d®,; =0 (j=k+1,...,n). By (1.3), these equalities imply the relations

Xa®; =0 (a=0,1,...k j=k+l,..,n)

in view of which we can add terms c,®, with arbitrary c,=const to the complete integral (1.20) of Eq.
(1.21). Consequently, of the n essential constants a,, not one of which is additive, n—k will be the

coefficients c,,,, ..., c,, so that the complete integral (1.20) will have the following structure
AKX W,.... X, W) |
V= Wt Xy Xy @ reres8y )+ ;0 8y, ———hn 20 1.23
(6% 0000 Xy 1@y pen @By ) j. ALY YR (1.23)

It follows from (1.23) that the integrals (1.22) may be written

v _w v
= R =®,;=b,, =XoV=X W (a=1..k j=k+l,.., 1.4
%, - da, = by %, ®;=bj, Yo =Xa ( J n) (1.24)
The second group of integrals (1.24) relates to the determination of the constants b, of the holonomic
constraints, and when these are added to the first group of integrals (1.24) the solution is uniquely
defined: x,=x, (¢, a, ..., a,, b, ..., b, by, ..., b,), while the third group in (1.24) defines the
variables y, (=1, ...,k).

2. We shall show that, under quite general conditions, the canonical Poincaré-Chetayev
equations are Hamiltonian equations in non-canonical variables. Equations of this kind, which
are frequently more convenient than Hamiltonian equations in canonical coordinates, are
studied in the modern theory of Hamiltonian systems [6-8].

We shall assume throughout that Q,=0 in Eqgs (1.18), and &(t, x)=0 (i=1, ..., n)in
Eqs (1.1). Then X, =9/4dt, c;y=0 (a, s=1,..., k).

Define the generahzed Poisson bracket of smooth functions ft, x, y) and ¢(z, x, y) by

f, Q)—% af‘a;ia o?+ cw'gj—i Say'%ys (.o, s=1,....,k) (2.1)

In the special case of canonical variables x;, y, = af,/a.t, (i=1, ..., k=n), when system (1.2)
reduces to a permutation group, formula (2.1) reduces to the classical Poisson bracket

(f.w)-af % _¥ a“’ =1,...,k) 22)

dx; 9y, dy; ox;

this being the reason for the choice of sign in (2.1); Chetayev [2-4] defined generalized Poisson
brackets with the opposite sign on the right of (2.1). Using (2.2), we can write the canonical
Hamilton equations, as is well known, in the form

. oH . oH
=, H), y,=0p,H)&S¥=—, y=—— (i=]..,k) (23)
3)’.' ox;

where H(t,x,, y,) is the classical Hamiltonian function.
It can be seen that the generalized Poisson bracket has the same properties as the classxcal
Poisson bracket, namely
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1. they are skew-symmetric: (f, ¢)=—(o, ) |
2. they are bilinear: (f, A, + A,0,)=A(f, ¢)+A,(f, ¢,)(A,€R)
3. they satisfy the Jacobi identity: ((f, ¢), v) +((¢, ¥), f)+((v, /), 9)=0

4. they obey Leibniz’s rule: (f.f,, @)= fi(f;» 0)+ f,(fi, ¢).
Let us assume that fit, x, y)=const is a first integral of the canonical equations (1.18) and

(1.19). Then, using definition (2.1), we have the identity

df of OH of o
L =Ly X -X H|==+(f,H)=0 24
a e T, ('“ay “) o &9

The following generalization of Poisson’s theorem [2-4] is true: If ¢(z, x, y)=a and y(t, x,
y)=b are the first two integrals of Eqs (1.18) and (1.19), then (¢, y)=c will be the third first
integral of those equations.

We will now prove that the canonical Poincaré—Chetayev equations (1.18) and (1.19) may be
expressed in the form _

e |
"y' Sa(pH) —L=(pH) (=leks j=1..n) 2.5)

where H (t,x, y) is the generalized Hamiltonian function (1.17).
Indeed, by definition (2.1)

oH 3y , dy aH oH

i H)=—— Xy - =L X,H + ¢ ~X;H+c5;—

v H) Y @i~ a)’a 9 a.Vj a}'a o (] %
H, 9% . 9% H _oH |

( JH)= x, ——L X H+ = x x 2.6
PR ARl vl el @)

since X,y,=0, 0y,/dy,=98,, ox;/dy,=0 by virtue of the fact that the variables x; are
independent of y, (i, a=1,..., k j=1, ..., n) and vice versa, and that the variables y, are
also independent; J,, is the Kronecker delta.

Comparing the right-hand sides of Egs (1.18) and (1.19) with formulae (2.6), we confirm the
correctness of (2.5). This implies that the canonical Poincaré-Chetayev equations are
Hamiltonian equations in non-canonical variables for which, consequently, the results of [2-5]
are applicable.

Example 2.1. We will develop the Poincaré-Chetayev equations of motion for a heavy rigid body
with one fixed point, for which the kinetic and potential energies are respectively T =1/2A®? and
V =Mgx/y,, where o, are the projections of the angular velocity, ¥y, are the cosines of the angles between
the vertical and the principal axes of inertia, and x are the coordinates of the centre of mass.

As the defining coordinates x, and parameters of the real displacements 1, we take y, and o,
respectively (i =1, 2, 3), where Yy, satisfy the Poisson’s equations

dy,/dt =37, ~ayy; (12 3)

Let f(y,, Y5> Y5) be a function whose derivative is

Y ol XL, & ¥ A
o w,[ah'r, ay,h) [373?1 3Y173] (37,72 ayz‘h]

Hence we obtain expressions for the operators (1.2)
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of of
X fmyym—eyy=— (123) 2.7
=tg My 2.7)
whose commutator is
(X.X,)=Xf (123) 28) .

Consequently, the non-vanishing structure constants will be ¢, =c;=c3 =1, c=c)=ch=-1.
Poincaré’s equations (1.9) reduce to Euler’s equations

Ado, / dt = (Ay - Ay)0,05 +Mg(x3Y, - x375) (1 2 3) (2.9)

to which we must add Poisson’s equations. '
We replace o, by the variables y, =07 /dw, and consider the function H =y?/(2A,)+Mgx’y,. The
Poincaré~Chetayev equations (1.18) and (1.19) take the form of Hamiltonian equations

D A h e Mg(x 0y, ~x0y,), My, By 22 (12 3) 2.10
4 A y2y3 + Mg(x372 ~ X373 il A Y3 A, (2.10)

if we note that the right-hand sides of these equations are Poisson brackets

OB ==X H v 2Ly, =y, 23 (211)
. e

We note, among other things, that the representation (2.1) of the Poisson bracket for the functions F and
H of the variables y, and vy, is more compact compared than its representation as a sum of vector-scalar
products [12] of three vectors

-y-(V,FXV H)~y-(V,FxV H+V FxV H)

where the symbols V, and V, denote the gradients with respect to y and ¥, and F is successively equated
to the projections y, and Yy, respectively.

3. We will now derive the generalized Lagrange and Hamilton equations in term of depen-
dent coordinates. '
Suppose that the constraints are represented by differential equations

X; = by (8, x)xq +b;(t,x) (3.1)
which constitute a completely integrable Pfaffian system. Here and throughout this section, a,
i=1,....,k j=k+1,...,n
The virtual displacements are defined by the equations

As parameters of the real and virtual displacements we take [S] n,=x, and ©,=d&x,
respectively. Using (3.1), we find expressions for the operators of the group (1.2)

==4+p —_ X f=——+bh, — 33
Xof 3 ja ; of 3 a jo ( )

whose commutator vanishes because Eqs (3.1) and (3.2) are integrable. Consequently, all
the structure constants of the group (3.3) vanish: ¢z =0(x, B, s=0, 1, ..., k), i.e. the
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operators (3.3) form an Abelian group. Poincaré’s equations (1.9) in that case become

4oy,

dt an,

or, in view of (3.3)

i B_é__-?—é-—b aL Qu (L L(t,x], ny-i'p-ﬂ’ik) (3’4)

dt ox, Ox, o o, Bx

Equations (3.4) and (3.1), taken together, form a system of differential equations of order
n+k in the same number of unknowns x,, ..., X,, X, ..., X.

Equations (3.4) are generalized Lagrange equauons m the dependent (redundant) coordin-
ates; these equations do not involve the reactions to the constraints. They are more convenient
than the Lagrange equations with undetermined multipliers A,

4 _ai__a_l‘@Q‘._bﬁxj, 4 oL —-§£'--Q.+lj L=L(t,x),cnXys Xpeeee ) (3.5)

dt dx; ox; dt ax ox;

whose order is 2n>n+k, considered together with equations (3.1), which are of order %. It
is true that Egs (3.5) and (3.1) enable one to determine not only x, ..., x, but also A,
(j=k+1,..., n), and together with them the reactions of the constraints (3.1); but for large n
they are not very tractable.

It can be shown, however, that the elimination of A, from Eqs (3.5) and the use of (3.1) lead
to Eqgs (3.4); we shall not go into details.

If we replace the parameters M, = X, by the variables y, =dL/dx,and form the function H(z,
Xiy ooos Xyy Vis «« + 5 Vo) =You¥, —L (summation over the repeated index o from 1 to k), then
Eqs (3.4) transform to the canonical Poincaré—Chetayev equations (1.18)

dx
by __OH by oH +Q., Sy JOH (3.6)
dt  ox, ox; dt 9y,

which are generalized Hamilton equations in the dependent coordinates. Together with these
equations we must consider Eqs (3.1), rewritten as

dx; -b oH
dt iua)’a

thus obtaining a combined system of differential equations of order n+k in the same number
of unknowns x,, ..., X,y Yis.evs Yy

Thus, the generalized Lagrange and Harmlton equations in redundant coordinates are
special cases of the Poincaré—Chetayev equations.

It is interesting to compare Suslov’s theorem [13, chap. XLIII] with the generalized Jacobi
theorem. Suslov considered the Hamilton equations with multipliers conjugate to Eqgs (3.5),
and instead of (1.21) he obtained the following partial differential equation [13, formula
(43.25)})

LN/ B PR LA LA Y (338)
a "ok ox,
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where f;(t, x)=c; are the integrated equations of the constraints (3.1), A, = - Adt are impulse
factors; he proved that if one knows a compete integral of equation (3.8), then the equations

3_V=b” .al=p3+Aj-a—fL (s=1,...,n)
aa‘ ax’ ax:

are integrals of the Hamilton equations conjugate to Eqs (3.5). Proposing to eliminate the
impulse factors with the help of the differentiated equations of the constraints, Suslov then
obtained an equation of the form (1.21), taking into account (3.3), and integrals (1.22), just as
the elimination of A, from Egs (3.5) led to Egs (3.4).

Example 3.1. Let us consider Suslov’s Example 134 in his notation [13]: two heavy particles of masses
m, and m, with coordinates y,, z, and y,, z, respectively, are moving in the yz plane, subject to the
constraints

my, +myyy =0, (¥ =Y ) —Y2)+(z =202 =23) =0 M=m+m,)

The position of the system is determined by the coordinates y,, z, of the centre of mass and by the
quantities n=y, -y, and @=arctg{(z, - z,)/(y, - y,)), in terms of which the integrated equations of the
constraints become

Ve =¢q = const, ﬂMQ802 = const

If we take the quantities z, and ¢ as the parameters of the real displacements, the operators (1.2) will
be o

Xo ="'a"o x] = -2-’ xz ='2""-a—(ntg¢)

a ', O w m

and Eq. (1.21) will be

v t|1{av) M coslefov wY
— | + °°s2° —--mg(p—-] +Mgz, =0
a 2|M|la,) mm n° oo n

which is identical with an equation of the type (3.8) after the impulse factors of the constraints are
eliminated [13, p. 471].

4. Let us consider the equations of motion of holonomic systems in quasi-coordinates, which
have been attracting attention in the literature for many years (e.g. [14-17]). We will show that
these equations are a special case of the Poincaré—Chetayev equations.

Let x,and %, (i=1, ..., k) be the independent Lagrangian coordinates and velocities of a
holonomic system, ¢= x, the time, and %, =1. As parameters of the real displacements we take
the quasi-velocities m,, which are related to x; through the non-integrable equations

N, =a,(x)%; (5,i=0,1,...,k), det(ay)#0 4.1)
Then [16]

where N, =1, a, =b, =9, b,=-b,a,, ab,=ab,=5, (i,r,s=0,1,...,k).
We now introduce the differentials of the quasi-coordinates
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dn, =n,dt =g,dx; (i,s=0,1,....k) (4.3)
in terms of which thie differentials of the coordinates x; may be written in the form
dx; =b,dr, (dry=dt) (4.9)

We introduce ad hoc notation for the derivatives of a function f(x) € C' with respect to the
quasi-coordinates

¥ _, ¥ F_

—_—=a

o e e (TOLek) (4.5)

using which, together with the parametrization (4.2), we construct operators

X, =£‘f = ,,aa% (r,s=0,1,....,k) (4.6)
with commutator
[Xi, X;1f = Gl - Cif =c,§—§f:- @i, j,s=0,1,...,k) 4.7)
onon; onom, o,

where the structure coefficients are

[ b
ox, ox,, dx, Ox,

(avi’jo r,s =O,l....,k)

It is obvious that the infinitesimal operators (4.6) form a closed system. Consequently,
Poincaré’s equations retain the form (1.9) even in terms of quasi-coordinates, if one takes (4.6)
and (4.8) into account

40 _on O L @is=laak) (49)

dt an,-_ a'lg a“: a’ti

Combining Eqs (4.9) with the kinematic relations (4.2), we obtain a system of 2k first-order
ordinary differential equations, each in the same number of unknowns n,, ..., N, X, ..., X,
Introducing the three-index Boltzmann symbols

' 'Y:i =c;i' 75} =3; =C}'o . J.s=1,...k)

we conclude that, by (4.6), the Euler-Lagrange equations (8.1.5) of [16] in quasi-coordinates
are identical with Eqs (4.9) when P, =Q,. Thus, the Euler-Lagrange equations are a special
case of Poincaré’s equations, when the quasi-velocities (4.1) are taken as the parameters m, of
the real displacements. '

On changing from the variables 7, to the variables y,=dL/dn, (i=1, ..., k) the equations of
motion (4.9) take the form of the Poincaré—Chetayev equations (1.18), i.e.

dy, ,0H , oH H .
{ =c +c .y ~—+ sy n‘. 3 (a"’s=l’...,k) (4010)
dt of sya Ys 0i/s 3 ,' Ql a)’,'
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which are the canonical form of the Euler-Lagrange equations. Together with Eqs (4.10) we
must consider Eqs (4.2), rewritten in the form

% =boH/dy, (i,s=0,1,...k) (4.11)

Thus, we obtain a system of 2k differential equations in 2k unknowns y,, ..., ¥ X5 ... X
(Eq. (4.11) for i=0 reduces to the identity 1=1, since x=by,=n,=0H/dy,=1).

Clearly, the theory of the Poincaré—Chetayev equations is also applicable to the Euler—
Lagrange equations in quasi-coordinates.

Example 4.1. For a heavy rigid body with one fixed point (Example 2.1), the Lagrangian coordinates x,
and quasi-velocities 7, will be the Euler angles x, =8, x, =y, x, =¢ and the projections o, (i=1, 2, 3) of
the angular velocity on the principal axes of inertia, so that the Kinetic and potential energies become

T= y,A,m,? V= Mg(xf sin@sin@ +x2 sin@cos@ + x, cos0)
Using relations of the type (4.2)

0=, cosQ-,sin@, ¥ =(,sing+w,cos9)/(sinf), ¢ =0, -ctgd(,sing+®, cosp) (4.12)

we construct the operators of a transitive Lie group

¥y H e e Y

X\f = —==b,——=coo_—
a‘] ax’ 09 sin® W
g-?'!—s l:— i 1 2’;2 .?-f-- (] i
Xl e T T e e o o (4.13)

xsf'g;"brs'aif—'%

. of
- ctg0singp—
op

with commutator (2.8). The non-vanishing structure constants are ¢}, =c},=c} =1, ¢ =cj =c};=-1, asin
Example 2.1. '
The Poincaré equations have the form of (2.9), on the right-hand side of which Yy, must be replaced by

y; =sin0sin@, Y, =sinBcosy, Y3 =cosd (4.14)

Equations (2.9) are completed by adding Eqs (4.12).

The canonical Poincaré-Chetayev equations have the form of the first group of equations (2.10), taking
into account (4.13) and Eqs (4.12) with ®, in the latter replaced by y,/A, (i=1, 2, 3) where these
equations take the form of Hamilton equations '

. oH ) oH . oH
0=(0,H)=—X_,0, y=(y,H)=—X_V, o=(p,.H)y=—X_0, (x=12,3)
e N Ny

H= y: 1(2A,)+ Mg(x? sinOsinp+ xg sin@cos@ + xg cos9)

5. In conclusion, we will briefly consider the application of the Poincaré-Chetayev equations
to non-holonomic dynamics. This question was previously considered in [9, 18, 19], but the
results of Section 4 provide a new approach.

The Euler-Lagrange equations in quasi-coordinates combine the equations of motion for
both holonomic and non-holonomic equations [14-17]. Consequently, the same is true of the
Poincaré-Chetayev equations. Indeed, retaining the notation of Section 4, let us assume that
the system under consideration is subject to non-integrable constraints of the form
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N, =a,%, =0, a, =a,(x;), rank(a,)=k-m (rj=0,1,...k; s=m+1,....,k) (5.1)

To Eqgs (5.1) we add arbitrary linear forms

n; =a,x,, a, a,.,(xj) (i=1,....m) 52)

but such that det(a,)#0 (r, s=0, 1,..., k) in particular, the quantities n, (i=1, ..., m) may
be generalized velocities x;. Adding m,=1 to the relations (5.1) and (5.2) and solving for x,
(r=0,1,..., k) we obtain (4.2).

Virtual variations of the quasi-coordinates =, =m,dt are determined by equalities ©, =, =
adx, (r=1,..., k), where, by Egs (5.1), we have constraints ér,=0 (s=m+1, ..., k). Using
the D’ Alembert-Lagrange principle, we conclude that, unlike the results of Section 4, if we are
considering a non-holonomic system of m Poincaré equations of the form (4.9)

d dL ,naL r oL aL
& m o, om,  om,

The structure coefficients cj are also determined by (4.8), but with the indices i, j varying from
Otom.

Equations (5.3), together with the constraint equations (5.1) and the relations (5.2), form a
system of k+m equations of motion of a non-holonomic system in quasi-coordinates with the
same number of unknowns x,, ..., x,, N;,..., N,. It should be stressed that the generalized
Lagrangian L(t, x,, ..., X, M, ..., N,) appearing in (5.3) may depend on all £ quasi-
velocities m,, and it is necessary to use the constraint equations (5.1), n,=0 (s=m+1, ..., k),
only after setting up Eqgs (5.3) [16, 17].

Note that, by the method described in [5] to determine the reactions to constraints, the
remaining k —m equations (4.9), with the terms b R, added to their right-hand sides, enable us
to find the reactions R; to the constraints (5. 1) If we free the system from the constraints (5.1),
replacing their effects by the reactions R, (i= , k), the result will be a holonomic system,
to which equations of type (4.9) are applicable. Since the constraints are assumed to be ideal,
the work done by their reactions in virtual displacements will vanish

+Q, (o=1..m r=1,...,k) (5.3)

Riax" = R'bij&‘l =0 (i= l,on,k; j= 1,...,m)

Hence, since o, is arbitrary, it follows [9] that Rb; =0 (j=1, ..., m) which implies that the
first m equations of motion of the “freed” system are Eqs (5.3), and the remaining k-m
equations

—+Cpy — oL —_—t— oL —+Q, +b,R;, (s=m+1,..,k) (5.4)

o, I,

4, o
& o, =G,

in view of (5.1), enable us to determine the reactions R;, provided that rank(b,)=0.

Note that if Q, =0 Eqs (5.3) are equivalent to Eqs (3.14) of [18] and (1.13) of [19], but they
are slightly simpler thanks to the choice of the quasi-velocities m,, which vanish because of the
equations of the non-holonomic constraints (5.1). Let us replace the kinetic energy T(t, x,
Ny, ..., M) Of the holonomic system, occurring in the function L(¢, x, n) in Eqgs (5.3), by the
kinetic energy 6(¢t, x, n,, . . . , m,) of the non-holonomic system with constraints (5.1).
Obviously

o(t, x, My, N, ) =T, x,My,..., Ny, 0, 0).

Consequently, if n,=0 (s=m+1,..., k), then
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=1....m;, r=m+l1,...,k)

AL _ 30 AL _3(O+U) BLg(aT ”
m, on, om, om  am, (on, ) _,

and Egs (5.3) become

d % _ . 2 L rnore L) 420+D)
— _=(cw.na+c‘8.-)jﬁ:+(cama+co:‘ -é“_rl + (au. :

dtaﬂ,- i

(o,i,s=1,....m;, r=m+1,....k)

+Q, (5.5)

as in the case of Eqs (1.13) of [19]. Here (97 /dn,), ., denote the expressions d7/dn, when
=0(r, s=m+1,...,k).

- In the special case in which the parameters m; of (5.2) are the generalized velocities x, =1,
(t=1,...,m),ie. when a,=8,(3i, r=1, ..., m),all the structure coefficients vanish: ¢, =0 for

r < m [14], and equations (5.3) become

: & ajl _Cd‘xd anr +Co" an’ + an‘ +Q (5-6)

(o=L..,m; r=m+l..k L=LtX 0 X XXy Niaoeens M)

If we replace the parameters m, by variables y,=dL/dn, (i=1, ..., k), the equations of
motion (5.3) of the non-holonomic system take the form of the canomcal Poincaré-Chetayev
equations

@

oH | 4
-cm a)'a )’: +c§lys ""a""""'Qn | - (5-7)
=0H /3y, (ihot=1l,...,m; s=1,..,k)

to which we must add the constraint equations (5.1) and relations (4.2), rewritten in the form

-a-}-{--O (s=m+1,...,k), J'c,.=b,-j-ai'1-, (i=1..k j=0,1,..,m) (5.8)
9y, a)’j

- Equations (5.7) and (5.8) form a system of 2k+m equations in the same number of
unknowns X, ..., X, Yy ovos Yo Mpsoovs My [17])

Example 5.1. Working from Eqs (5.6), let us derive the equations of metion in Voronets’ form [20] for

a system with Lagrangian coordinates x,, ..., x, and non-integrable constraints
j:’ =a“(:,x)j‘+a,(t.x), (i=1,...m;, s=m+1,....n) (5,9)
Set n,=x, x,=txy=1 N, =%,-0.x, 0 =0, (#=0,1,...,m; s=m+1,...,n), so that x,=m,

x, =1, +a,m, and, in view of (4.1), (4.2), we have the relatlons

ay=b; =8;, a,=b, =0, by=-ay=0y4, a,=b, =8,

(i,j=0,1,....m; s,r=m+1,..,n)

according to which, by formulae (4.8)
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doy %0y doy Sy
i~ A e Pl

da, oo, Oa da
'=._ﬁ._£._.§. ihdend 27
VI T . (510)

(.j=1..m kr=m+1,..,n)

Noting (5.9) and (5.10), we conclude that Egs (5.6) now take the form of Voronets’ equations [20]

d % _30+)  H0+U) . ., (3L |
- ax, 5, +0, o, +(cﬁxj+co,)[aj']+a, (5.11)

(ivj. l' ’Om; r=m+ l.uo.”)

Equations (5.11) and (5.9) combined form a system of n differential equatnons, whose general solutlon
depends on n+m arbitrary constants.

In the special case in which the function L({t, x, X,, M,..» - . - » M,)» the forces Q, and also the
coefficients of the constraints (5.9) do not depend explicitly on the coordinates x, (r=m+1,...,n), Eqs
(5.11) are identical with the closed system of m Chaplygin equations [17] in the unknowns x,, ..., x,,.

I wish to thank L. M. Markhashov for useful comments.
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